
National Aeronautics and
Space Ad mi nist rat ion

Moffett Field, California 94035

Multiple Precision, Multiple Processor Vortex Sheet Roll-Up
Computation

David H. Bailey, Robert Krasny and Richard Pelz
RNR Technical Report RNR-92-028

October 9, 1992

I Abstract

I
I This paper describes a vortex sheet roll-up computation implemented using multiple

precision arithmetic on a highly parallel computer (an Intel iPSC/SSO).

Bailey: NAS Applied Research Branch, NASA Ames Research Center, Moffett Field, CA
94035-1000; email: dbaileyQnas .nasa.gov. Computer time was provided by the NAS
Systems Division at NASA Ames.
Krasny: Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109; email:
krasnyQmath.lsa.umich.edu. This work was supported in part by NSF grant DMS-
9204271 and a computer allocation at the NSF San Diego Supercomputer Center.
Pelz: Dept. of Mechanical and Aerospace Eng., Rutgers University, P.O. 909, Piscataway,
NJ 08855-0909; email: pelzQ j ove . rutgers . edu.

4

1

1. Introduction
A vortex sheet in incompressible flow is a surface across which the tangential fluid

velocity has a jump discontinuity. A basic idea in fluid dynamics going back to Prandtl is
that the vortex sheet can be obtained as the zero viscosity limit of a sequence of smooth
solutions to the Navier-Stokes equations. Thus, the investigation of vortex sheet motion
may yield insight into the structure of high Reynolds number flow.

According to linear theory, a flat vortex sheet of constant strength is subject to Kelvin-
Helmholtz instability. To study the nonlinear sheet motion, one must solve an integro-
differential equation [3, 151:

where z (r , t) is a complex-valued function representing the vortex sheet, I? is the circulation
parameter along the sheet and t is time. In the Kelvin-Helmholtz problem, the kernel is

1

K(z) = i co t7 rz

and the Cauchy principal value of the integral is taken in (1).
In 1979 Moore [ll] found that a singularity forms in a perturbed vortex sheet at a time

critical t,. The sheet remains continuously differentiable with respect to r at t = t , but
the curvature becomes infinite at a point. In 1983 Pullin [12] conjectured that the sheet
will roll up for t > tc into a spiral with an infinite number of turns. This idea is motivated
by the study of self-similar spiral vortex sheets which have a singularity present initially
1131.

2. N-umerical Solution
The earliest method for computing vortex sheet motion was the point vortex approxi-

mation [14]. The sheet is replaced by a set of point vortices { z j , j = 1, ..., N } whose motion
is governed by a system of ordinary differential equations

Here, Uk are quadrature weights.
This discretization has been the subject of controversy [3], but it is now known that

the point vortex approximation converges as N + 00 for t < t , [8, 61. A different approach
however is needed to compute the sheet's motion for t > t , . In the vortex blob method
[7, 1, 91, equation (1) is regularized by replacing the singular kernel K (z) with a smooth
approximation &(Z). The vortex sheet is obtained as the limit of solutions to the regu-
larized equation as the smoothing parameter S + 0. Thus, one seeks to compute solutions
for a sequence of values of 6 > 0 and then infer properties of the limit S + 0.

A difficulty arises in computing with small values of 6 because roundoff error perturba-
tions are amplified leading to inaccurate results. A Fourier filter can be used to overcome

2

4

this difficulty [8, 91, but the approach is limited to t < t , and to problems with peri-
odic boundary conditions. To maintain accuracy past the critical time and for problems
with general boundary conditions, the most promising approach is to use higher precision
arithmetic.

3. Multiple Precision Computation Software
The multiple precision (MP) computation in this application was performed using a

MP translator (TRANSMP) and a package of MP computation routines (MPFUN), both
of which were developed by one of the authors (Bailey).

MPFUN routines are available to perform the four basic arithmetic operations between
MP numbers, to compare MP numbers, to produce the integer and fractional parts, to
produce a random MP number and to perform binary to decimal and decimal to binary
conversion. Some higher level routines sort MP numbers; perform complex arithmetic;
compute square roots, cube roots, n-th powers, n-th roots, and T ; evaluate the functions
exp, log, cos, sin, cosh, sinh, inverse cos and sin; find the real or complex roots of polyno-
mials; and find integer relations in real vectors. For many of these functions, both basic
and advanced versions are available. The advanced routines employ advanced algorithms
suitable for extra high precision computation.

Conversion of a conventional scientific application program to use the MPFUN routines
is generally straightforward, but it is often tedious and error prone. For example, if the
slightest error is made in any of the arguments to the many subroutine calls, not only
will the results be in error, but the program may abort with little information to guide
the programmer. As a result of these difficulties, few serious scientific programs have
been manually converted to use the MPFUN routines. Similar difficulties have plagued
programmers who have attempted to use other multiprecision systems, such as Brent’s
package [5] .

To facilitate such conversions, one of the authors (Bailey) has developed a translator
program that accepts as input a conventional Fortran-77 program to which has been added
certain special comments that declare the desired level of precision and specify which
variables in each subprogram are to be treated as multiprecision. This translator then
parses the input code and generates an output program that has all of the calls to the
appropriate MPFUN routines. This output program may then be compiled and linked
with the MPFUN package for execution.

This translation program allows one to extend the Fortran-77 language with the data-
types MULTIP INTEGER, MULTIP REAL and MULTIP COMPLEX. These datatypes can be used
for integer, floating point or complex numbers of an arbitrarily high, pre-specified level of
precision. Ordinary variables in the input program may be treated as multiprecision vari-
ables in the output program by placing directives (special comments) in the input file.
In this way, the input file remains an ANSI Fortran-77 compatible program and can be
run at any time using ordinary arithmetic on any Fortran system for comparison with the
multiprecision equivalent.

This translator supports a large number of Fortran-77 constructs involving multipreci-

3

.
sion variables, including all the standard arithmetic operators, mixed mode expressions,
automatic type conversions, comparisons, logical I F constructs, function calls, READ and
WRITE statements and most of the Fortran intrinsics (Le. ABS, MOD, COS, EXP, etc.).
Storage is automatically allocated for multiprecision variables, including temporaries, and
the required initialization for the MPFUN package is automatically performed.

4. Multiple Processor Implementation
The implementation of this application on multiple processors of an Intel iPSC/860

parallel computer started with a conventional Fortran program previously developed by
two of the authors (Krasny and Pelz). To this program was added directives specifying
which variables are to be treated as MP. Only 11 of these directives sufficed for the correct
MP translation of the entire program file (nearly 600 lines). The resulting program was
tested and certified on single processors of both a eight-processor Cray Y-MP and a 128-
processor Intel iPSC/860, both of which are at the NAS computer center at NASA Ames.

Unfortunately, however, conversion of this program to MP (with 56 digit numeric preci-
sion) increases its run time by a factor of approximately 400. Such large increases are quite
typical in MP computation. Even higher ratios have been reported by researchers using
other packages. This ratio of 400 is exclusively due to the cost of calling multiprecision
routines - the translator introduces almost no overhead. In this particular application,
this large ratio means that computations of significant research interest are very much
supercomputer class calculations and suggest implementation on a highly parallel scientific
computer.

The Intel system is actually a very cost-effective platform for this type of computation,
compared to conventional supercomputers such as Crays, for several reasons. First of
all, unless very high precision is employed, the modest vector length in such computations
results in poor performance on Crays, whereas the performance rates of the RISC processors
are not significantly reduced. Secondly, multiprecision computations are very well localized,
so that they effectively utilize the cache memories of RISC processors such as the i860 used
in the Intel system. As a result of these advantages, the performance of this application
on the Intel, using as few as eight nodes, exceeds that of one processor of the Cray Y-MP.

The parallel implementation of this application is greatly simplified by the fact that the
entire computation requires only a very modest amount of memory. In fact, in problems
attempted to far, the total memory required is less than that found on a single node of the
iPSC/S60 (eight megabytes). Thus all working arrays may be allocated on each node.

The distribution of the computation among multiple processors of the Intel is achieved
by simply changing loops such as

do 100 j = 1 , nvort
zs in = s in (con2p * c (j))
x (j) = c (j) + amp * zsin

100 continue

to

4

do 100 j = kp + 1, nvort, np
zs in = s i n (con2p * c (j > >
x (j) = c (j) + amp * zs in

100 continue

where kp is the processor number and np is the total number of processors. Note that this
scheme achieves an optimal load balance of the computational work in the loop.

It remains only to note those points in the program where individual processors need to
share their computed results with all other processors. Such sharing of data is accomplished
by using a global summation routine, which replaces the argument array in every processor
with an array of the global sums over all processors. Intel provides a library routine for this
purpose (GDSUM for DP data), but it has been found by the authors that a simple Fortran
routine employing the bidirectional communication techniques of Seidel [101 and Bokhari
[4] is nearly twice as fast. Furthermore, the TRANSMP translator was able to translate
this routine into a M P global summation routine.

5. Results
We have obtained solutions for S = 0.03 and S = 0.02, which are significantly smaller

than in previous investigations. These computer runs required 7.4 and 128.2 hours CPU
time (based on 32 nodes of the Intel). A plot of the final results for S = 0.02 is shown in
Figure 1. These results provide strong support for Pullin’s conjecture that the sheet rolls
up into a spiral for t > t,.

That multiple precision arithmetic was required for these computations is indicated by
the fact that in the 6 = 0.02 run, the first (z, y) pair, which should always be (O,O), had val-
ues roughly at completion, so that over 20 digits of precision had been compromised.
Clearly if ordinary 64-bit arithmetic had been used, all significance would have been lost.
In this case it appears that a 56 digit precision level was generous. But for future planned
computations with smaller 5, it is expected that this level will be more fully utilized.

5

0.1

0.08

0.06

0.04

0.02

(I

-0.02

-0.04

-0.06

-0.08

I i i i i 1 i

I 1 1 1 1 1 1 -0.1

Figure 1: Final Solution for 6 = 0.02

6

References
[l] C. Anderson, “A Vortex Method for Flows with Slight Density Variations”, Journal

D of Computational Physics, vol. 61 (1985), p. 417.

[2] D. Bailey, “Multiple Precision Translation and Execution of Fortran Programs”, ACM
Transactions on Mathematical Software, to appear.

[3] G. Birkhoff, “Helmholtz and Taylor Instability”, Proceedings of the Symposium of
Applied Mathematics XIII, American Mathematical Society, 1962, p. 55.

141 S. H. Bokhari, “Complete Exchange on the iPSC-860”, ICASE Report 91-4, ICASE,
NASA Langley Research Center, Hampton, VA 23665, 1991.

[5] R. P. Brent, “A Fortran Multiple Precision Arithmetic Package”, ACM Transactions
on Mathematical Software, vol. 4 (1978), p. 57 - 70.

[6] R. Caflisch and J. Lowengrub, “Convergence of the Vortex Method for Vortex Sheets”,
SIAM Journal on Numerical Analysis, vol. 26 (1989), p. 1060.

[7] A. J. Chorin, and P. S. Bernard, “Discretization of a Vortex Sheet”, sl Journal of
Computational Physics, vol. 13 (1973), p. 423.

[8] R. Krasny, “A Study of Singularity Formation in a Vortex Sheet by the Point Vortex
Approximation”, Journal of Fluid Mechanics, vol. 167 (1986), p. 65.

[9] R. Krasny, “Desingularization of Periodic Vortex Sheet Roll-up”, Journal of Compu-
tational Physics, vol. 65 (1986)) p. 292.

[lo] S. R. Seidel, M. H. Lee and S. Fotedar, “Concurrent Bidirectional Communication on
the Intel iPSC/860 and the iPSC/2”, Computer Science Technical Report CS-TR-90-
06, Michigan Technological University, Houghton, MI 49931-1295.

[ll] D. W. Moore, “The Spontaneous Appearance of a Singularity in the Shape of an
Evolving Vortex Sheet”, Proceedings of the Royal Society of London, ser. A, vol. 365
(1979)) p. 65.

I121 D. I. Pullin, private communication, 1983.

[13] D. I. Pullin and W. R. C. Phillips, “On a Generalization of Kaden’s Problem”, Journal
of Fluid Mechanics, vol. 104 (1981), p. 45.

[14] L. Rosenhead, “The Formation of Vortices from a Surface of Discontinuity”, Proceed-
ings of the Royal Society of London, ser. A, vol. 134 (1931), p. 170.

[15] N. Rott, “Diffraction of a Weak Shock with Vortex Generation”, Journal of Fluid
Mechanics, vol. 1, (1956), p. 111.

7

